Long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats.

نویسندگان

  • Dan Han
  • Jianhua Jin
  • Hao Fang
  • Guoxiong Xu
چکیده

Propofol is a short-acting anesthetic and generally is utilized for the induction and maintenance of anesthesia in pediatrics and adults. However, whether repeated use of propofol affects long-term cognitive function remains unclear. This study investigated the effects of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rat. A total of 112 male newborn 7-day old Sprague-Dawley rats were randomly divided into 8 groups (n=14 rats per group) and intraperitoneally injected either with saline or propofol at 50, 100, and 150 mg/kg/day for 5 consecutive days. Four non-surgical groups were assigned as Con1, P50, P100, and P150. Four surgical groups were received an appendicectomy under propofol anesthesia and assigned as Con2, SP50, SP100, SP150. After 2 months raising, cognitive function, hippocampal neuroapoptosis, and intracephalic inflammatory cytokines were evaluated. There was no obvious effect on the cognitive function and neuroapoptosis after repeated use of propofol at a low dose for 5 days, whereas repeated use of propofol at a middle/high dose significantly increase the expression of apoptotic factors (caspase-3 and Bax), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and impair the cognitive function. Thus, our data suggest that repeated use of propofol at a low dose may be safe during the period of brain growth spurt. Using propofol at a recommended or higher dose for anaesthesia may lead to the cognitive defects, attributed to hippocampal neuroapoptosis and the overexpression of pro-inflammatory cytokines in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats

Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigat...

متن کامل

Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical chang...

متن کامل

Upregulation of Cdh1 Attenuates Isoflurane-Induced Neuronal Apoptosis and Long-Term Cognitive Impairments in Developing Rats

Neonatal exposure to isoflurane can result in neuroapoptosis and persistent cognitive impairments. However, the underlying mechanisms remain elusive. Anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdh1 are E3 ubiquitin ligases that play important roles in the central nervous system, including in the regulation of neuronal survival, synaptic development, and mammalian learning...

متن کامل

Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice.

Sevoflurane and propofol are widely used in pediatric anesthesia. Neurotoxicity of sevoflurane and propofol in developing brain has been reported and these effects raise concerns on the usage of the drugs. We investigated the influence of rutin, a flavonoid on the neurodegenerative effects of sevoflurane and propofol and on memory and cognition in neonatal rodent model. Separate groups of neona...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2015